Unlike fraud filters, risk scoring engines weigh the risk of various aspects of the transaction to determine the likelihood of fraud based on an overall score. Manual review staff are also typically hired to go over, with human eyes, orders within a predefined borderline range of scores. Many of the risk scoring engines on the market use machine learning, a form of artificial intelligence, to regularly update the weighting of variables based on recent fraud trends in manual review results.
Risk-scoring engines that utilize machine learning don’t prevent friendly fraud. Friendly fraud that gets through and is marked as true fraud will increase the number of false declines as the anti-fraud system learns to reject orders with normal appearing shopper behavior. Illegitimate chargebacks for non-fraud reason codes, such as Merchandise/Services Not Received, will also continue to slip through the system.
To better address your fraud problem, consider using a risk scoring engine in tandem with a chargeback management solution. This way you can avoid false positives and denting your approval rates, while still recovering your money from opportunistic friendly fraudsters.